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Magnetic field of an in-plane vortex outside a layered superconductor
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We present the solution to London’s equations for the magnetic fields of a vortex oriented parallel to the
planes, and normal to a crystal face, of a layered superconductor. These expressions account for flux spreading
at the superconducting surface, which can change the apparent size of the vortex along the planes by as much
as 30%. We compare these expressions with experimental results.@S0163-1829~99!10405-3#
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I. INTRODUCTION

Recently, scanning superconducting quantum interfere
device~SQUID! microscope magnetic imaging of interlay
vortices trapped between the planes of layered supercond
ors has been used to make direct measurements of the
layer penetration depth in several layer
superconductors.1–4 These experiments provide local me
surements of the interlayer supercurrent density, which h
implications for the validity of the interlayer tunnelin
model5 as a candidate mechanism for superconductivity
the high critical temperature cuprate superconductors.

To date the quantitative modeling of these experime
has assumed that the vortex fields at the supercondu
vacuum interface are the same as those in the bulk, neg
ing the well-known effect that the magnetic fields from vo
tices spread as they approach the superconductor-vac
surface from within the superconductor. Exact theoretical
pressions exist for a vortex in an isotropic London’s mode6

For a vortex oriented perpendicular to the surface in a su
conductor with an isotropic penetration depthl, the fields
above the surface can be approximated by a magnetic m
pole located a distancel below the surface.6,7 This means
that the spatial extent of the magnetic fields at the surfac
larger than in the bulk of the superconductor. If the bu
expressions were used to fit data at the surface, the fi
value of the penetration depth would be longer than the
value. This effect must be accounted for in making quant
tive estimates of the penetration depths by magnetic imag
measurements. For this purpose it is useful to examine
tex spreading at the surface for a highly anisotropic sup
conductor, since recent experiments have studied vortice
superconductors withlc /lab;10–100.

It is well known that the anisotropic London model
appropriate for describing a stack of Josephson coupled
perconducting layers at length scales large compared to
interlayer spacing. In this paper we present an exact solu
of London’s equations for a straight vortex approaching
superconductor-vacuum interface normal to the interface
an anisotropic superconductor. We show how flux spread
PRB 590163-1829/99/59~6!/4343~6!/$15.00
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near this interface effects the magnetic fields above the
terface, and show that there is good agreement between t
theoretical results and scanning SQUID microscope m
surements on single crystals of the layered high-Tc cuprate
superconductor Tl2Ba2CuO61d ~Tl-2201!.1

II. THE MODEL

A method for finding the field distribution of a straigh
vortex crossing a plane surface of an anisotropic superc
ductor has been developed in Ref. 8. We will outline th
method and apply it to the case of a vortex, oriented alonb
in the ab plane of a uniaxial material, which crosses t
plane faceca of the crystal. For a vortex not too close to th
crystal corners, the crystal surfaceca can be taken as an
infinite plane. We choose the coordinatesx,y,z correspond-
ing to c,a,b of the crystal as shown in Fig. 1. Then the ma
tensor is diagonal:mxx5m3 ,myy5mzz5m1 . The standard
normalizationm1

2m351 is implied. The method consists o
solving London’s equations for the field inside the superc
ductor and matching the result to a solution of Maxwel
equations in the vacuum outside the sample. For the isotr
case, the problem is simplified by the cylindrical symme

FIG. 1. Geometry and axes used in this paper. A single vor
centered atx50,y50, emerges normally to theac face of the crys-
tal located atz50.
4343 ©1999 The American Physical Society



ic

h

t

l
e

S

n
v-
is

f a

an

n

-

es

tion

m-
-

t

4344 PRB 59J. R. KIRTLEY, V. G. KOGAN, J. R. CLEM, AND K. A. MOLER
of the field distribution.6,9 This is not the case for anisotrop
materials, and a more general approach is needed.

Inside the superconductor, the fieldh(r ,z), with r
5$x,y%, satisfies the London equations:10

hi2
4p

c
l2mkleils

] j k

]xs
5f0d~r !d iz . ~1!

Here, j is the current density,f05hc/2e is the supercon-
ducting flux quantum, and the average penetration deptl
5(lab

2 lc)
1/3 (lab

2 5m1l2, lc
25m3l2).

Deep inside the superconductor, the fieldh(r ) has only a
z component. However, near the exit from the sample az
50, the vortex ‘‘opens up’’ andhx ,hy are no longer zero. In
other words, Eq.~1! is a system of three linear differentia
equations forhx ,hy , andhz with a nonzero right-hand sid
~RHS!. The general solution is then

h5h~0!1h~v !, ~2!

whereh(0) solves the homogeneous system with zero RH
whereash(v) is a particular solution of the full system~1!.
The latter can be taken as the field of an infinitely long u
perturbed vortex alongz; this assures correct singular beha
ior at the vortex axis. The Fourier transform of this field

h~v !5
f0

11lab
2 kx

21lc
2ky

2
ẑ. ~3!

With this choice ofh(v), the fieldh(0) is the correction due to
the surface of the unperturbed vortex fieldh(v). We note that
the Clem-Coffey result for a vortex parallel to the layers o
Josephson coupled layered superconductor reduces toh(v) if
one disregards the core correction.11

Because the only sample boundary is parallel to the pl
xy, we Fourier transform Eq.~1! with respect tox,y. We
are then left with the system of equations forh(k,z)
5*drexp(2ik•r )h(r ,z):

m1hx92~11m1ky
2!hx1m1kxkyhy2 im1kxhz850,

m1kxkyhx1m3hy92~11m1kx
2!hy2 im3kyhz850, ~4!

im1kxhx81 im3kyhy81~11m1kx
21m3ky

2!hz5f0 .

For brevity, we have set the averagel as the unit of length
so thatlab

2 5l2m1 andlc
25l2m3 are replaced withm1 and

m3 ; the prime in the above equations denotesd/dz. The
field h(0)(k,z) satisfies thehomogeneoussystem of linear
second-order ordinary differential~with respect to the vari-
ablez! equations, i.e., it is a linear combination of expone
tial functions ofz:

h~0!~k,z!5(
n

H~n!eanz. ~5!

Thez independent coefficientsH(n)(k) andan(k) are still to
be determined. Each term in the sum~5! should satisfy sepa
rately the system~4! with zero RHS. Omitting the labeln we
write this system as

D i j H j50 ~6!
,

-

e

-

with a symmetric matrixD i j :

Dxx511m1ky
22m1a2,

Dxy52m1kxky ,

Dxz5 i m1kxa, ~7!

Dyy511m1kx
22m3a2,

Dyz5 i m3kya,

Dzz511m1kx
21m3ky

2 .

The determinant of this matrix must be zero, which provid
all possible values ofa:

a1,256S 11m1k2

m1
D 1/2

, ~8!

a3,456S 11m1kx
21m3ky

2

m3
D 1/2

. ~9!

Deep inside the superconductor, the surface correc
h(0)(z→2`) must vanish, implyinga1 and a3 must be
positive. The homogeneous system~6! allows one to express
~for each of thesea ’s! two out of three componentsHi in
terms of the third. We obtain after simple algebra:

Hx
~1!5 i

11m1kx
2

m1kxa1
Hz

~1! , Hy
~1!5 i

ky

a1
Hz

~1! ; ~10!

Hx
~3!50, Hy

~3!5 i
a3

ky
Hz~3!. ~11!

Thus, the field inside the sample will be determined co
pletely afterHz

(1) andHz
(3) are found from the boundary con

ditions at the sample surface.
The field outside the sample is described by divh50 and

curlh50, so that one looks forh5¹w with ¹2w50. The
general solution of Laplace’s equation which vanishes az
→` is

w~r ,z!5E d2k

~2p!2
w~k! eik•r2kz. ~12!

The two-dimensional~2D! Fourier transform is defined by

w~k!5ekzE d2r w~r ,z! e2 ik•r. ~13!

The boundary conditions at the free surfacez50 consist
of continuity of the three field components:

ikx w5Hx
~1!1Hx

~3! ,

iky w5Hy
~1!1Hy

~3! , ~14!

2k w5hz
~v !1Hz

~1!1Hz
~3! .

The componentsHx,y
(1,3) are expressed in terms ofHz

(1,3) in
Eqs.~10! and ~11!, so that the system~14! can be solved to
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find w along with allHi ’s. We are interested here primaril
in the field outside the sample:

w~k!52
f0 ~11m1kx

2!

m3a3 @m1kx
2 a3~k1a1!1ka31ky

2#
. ~15!

It is readily verified that for the isotropic material Eq.~15!
reduces to the known result by Pearl:w52f0 /a isk(k
1a is) wherea is is the isotropic version of eithera1 or a3 .6

Sinceoutsidethe sampleh5¹w, we have

hx,y~k!5 ikx,y w~k!, hz~k!52k w~k!. ~16!

Then, for example, the

hz~r ,z!52E d2k

~2p!2
kw~k! eik•r2kz. ~17!

In particular, the total magnetic flux through any planez
5z0 is given byhz(k50,z0)5f0 as expected.

The field inside the sample is given by Eqs.~2!, ~3!, and
~5!. The coefficientsH(1,3) in

h~0!~k,z!5H~1!ea1z1H~3!ea3z ~18!

are obtained by solving Eqs.~14!, ~10!, and~11!:

H~1!5w~k!H ikx ,i
m1kx

2ky

11m1kx
2

,
m1kx

2a1

11m1kx
2J , ~19!

H~3!5w~k!H 0,
iky

11m1kx
2

,
ky

2

a3~11m1kx
2!
J . ~20!

Thus, for example,

hx~r ,z!5E d2k

~2p!2
ikx w~k! eik•r1a1z. ~21!

For what follows, we will only concern ourselves with th
fields outside of the superconductor. In the experiment
Ref. 1, the componenthz was probed with a SQUID pickup
loop which was much larger than the penetration depthlab .
One therefore expects the instrument to measure a
nearly equal to the pickup loop size times

Hz~x,y!5E
2`

`

hz~x,y,z! dx. ~22!

The vortex spreads as it approaches from below the su
conducting surface in thex direction as well as in they
direction; nevertheless numerical estimates show that u
typical conditions the experimental signal is well represen
by Eq. ~22!. Then we obtain:

Hz~y,z!

f0
5E

2`

` dky

2p

eikyy2ukyuz

m3a ~a1ukyu!
~23!

with a5a3(kx50)5(m3
211ky

2)1/2. In conventional units,

Hz~y,z!

f0
5E

2`

` dky

2p

eikyy2ukyuz

a ~a1lcukyu!
~24!
f

x

er-

er
d

with a5(11lc
2ky

2)1/2. It is worth noting that the quantity
Hz(y,z) depends only onlc .

After the substitutionlcky5sinhu, Eq. ~24! takes the
form

plc

Hz~x,y!

f0
5E

0

`

du e2u2z8sinhu cos~y8sinhu!

5ReE
0

`

du e2u2wsinhu

5ReF 1

w
1

p

2
~E1~w!1Y1~w!!G . ~25!

Here, y85y/lc ,z85z/lc , and w5(z1 iy)/lc ;E1 and Y1
are Weber’s and Neumann functions, see Ref. 12.

For uwu!1 ~both y and z are small relative tolc) we
have:12

plc

Hz~y,z!

f0
5ReF11

w

2 S ln
w

2
1g2

1

2D G
511

z

2lc
S ln

Ay21z2

2lc
10.077D

2
y

2lc
tan21

y

z
~26!

(g50.577 is Euler’s constant!. If uwu@1 ~at least one ofy or
z is large relative tolc), we obtain:

plc

Hz~y,z!

f0
5ReF 1

w
2

1

w2 1O~ uwu24!G
5

zlc

y21z2 2
~z22y2!lc

2

~z21y2!2
1 ¯. ~27!

At large distances from the vortex exit, the second term
be neglected andlc drops out of the result; this is expecte
since the field there is approaching the Coulomb form w
no trace of material properties.

To form a complete picture of the field distribution ou
side the sample, we imagine that the same SQUID prob
oriented in thexz plane so that they component of the field
~integrated over the probe area! is measured. Then the
SQUID flux will be nearly equal to the pickup loop siz
times

Hy~y,z!5E
2`

`

hy~x,y,z! dx5E
2`

` dky

2p
ikyw~0,ky!eikyy2kyz.

~28!

The two-dimensional fieldHW satisfies divHW 5curlHW 50.
Hence, it can be written asHW 5¹F with ¹2F50. This im-
plies thatHz andHy are real and imaginary parts of the sam
analytic function given in Eq.~25!:13

Hy~y,z!5
f0

plc
ImS 1

w
1

p

2
@E1~w!1Y1~w!# D . ~29!

In particular, the asymptotic form of this function forw@1
can be written as
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1

w
2

1

w2 '
1

w11
, ~30!

which implies that at large distances the fieldHW behaves as a
field of a 2D ‘‘charge’’ situated atz52lc .

III. RESULTS

Figure 2~a! shows streamlines ofHW (y,z) for a single an-
isotropic vortex centered atx50,y50. These streamline
were generated numerically as follows: the starting points
the lines were atz/lc523, with a spacing iny between the
lines proportional to (]Hz /]y)21 at z/lc523. Small steps
z5z1Dz,y5y1Dy, with Dz5d sinu,Dy5d cosu, were
generated, withu5tan21

„Hz(y,z)/Hy(y,z)…. The fields
were recalculated at the new positions, and then the pro
was repeated untiluz/lcu.3 or uy/lcu.3. Figure 2~b! shows
the results if field spreading below the surface is neglect

bz~x,y,z,0!5
f0

2plablc
K0~R̃!, ~31!

whereK0 is a modified Bessel function of the second kind
order 0,R̃5@(s/2lab)

21(x/lab)
21(y/lc)

2#1/2, ands is the
interplanar spacing.11 For s!lab , Eq. ~31! has the Fourier
transform given in Eq.~3!. The fields forz.0 are given by

FIG. 2. Streamline mapping ofHW (y,z), the magnetic field inte-
grated overx, for a single interlayer vortex shown in Fig. 1. Th
spacing of the streamlines is proportional to (]Hz /]y)21 at z5
23lc . ~a! is the present model, which includes vortex spreadi
~b! is for a model which neglects field spreading below the surfa
f

ss

:

f

bz~r ,z!5E d2k

~2p!2
bz~k! eik•r2kz, ~32!

where

bz~k!5E d2kbz~x,y,z50!e2 ik•r ~33!

~Ref. 14!. The fields in thex and y directions are treated
similarly, using the relationsbx(k)52 ikxbz(k)/k, and
by(k)52 ikybz(k)/k. The calculated fields were integrate
over x and streamlines were generated just as for the e
London expressions. This is the procedure used to mode
experimental results in Ref. 1. In both cases the fields ext
into the vacuum nearly isotropically at large distances, as
point monopole source were placed nearz52lc . In the full
treatment, Fig. 2~a!, the fields spread as the vortex a
proaches the surface from inside the superconductor.

A one-dimensional rendering of our results above the s
face of the superconductor is shown in Fig. 3, which pl
plcHz(y,z)/f0 as a function ofy/lc for several values of
z/lc . For comparison, the results neglecting vortex spre
ing are also shown. Note thatHz(0,0), which approximately
indicates the peak signal in an experiment, is overestima
by a factor ofp/2 if vortex spreading is neglected. Also, th
full width at half maximum~FWHM! of the flux contour is
1.87lc for the full theory, while it is 1.37lc if flux spreading
is neglected. Therefore the neglect of flux spreading co
result in an overestimate oflc by 30%.

IV. COMPARISON WITH EXPERIMENT

Previous analyses of experimental data,1,2 neglected the
effect of vortex spreading at the surface. In retrospect,
neglect was not unreasonable, given the quantitative ag
ment between the interlayer coupling strength obtained fr
vortex imaging measurements and from the Joseph
plasma resonance.2 With the full theory presented in this
paper, it is now possible to quantitatively examine this
sumption. However, we note that there are additional s
tematic experimental uncertainties in this technique. Th
errors include the effect of macroscopic screening curre
which may create a slightly inhomogeneous background
relative angle of 10–20 degrees between the surface of

;
.

FIG. 3. Plot ofHz(y,z) for a single interlayer vortex normal to
the superconducting surfacez50, as a function ofy/lc , for fixed z
values, wherey is the distance from the center of the vortex along
plane direction, andlc is the interlayer penetration depth.
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superconductor and the SQUID pickup loop, the uncerta
in the exact value of the height of the pickup loop, and so
effect of the leads to the pickup loop on the effective sha
of the pickup loop. We estimate that these errors may als
as large as 30%.

Figure 4 shows gray-scale images of five interlayer vo
ces in Tl-2201 magnetically imaged using a scann
SQUID microscope.1 In these experiments the experimen
signal is equal to the integrated magnetic flux through
pickup loop. The vortices appear elliptical in shape, with
long axis~parallel to the planes! nearly vertical in these im-
ages. The spatial extent of the vortex images perpendic
to the planes is limited simply by the size of the pickup loo
The spatial extent parallel to the planes is set primarily
the interplanar penetration depth. Figure 5 shows cross
tions through the experimental data along the direction p
allel to the planes as indicated by the dashed lines in Fig

To generate a theoretical expression for fitting the exp
ment results, we use the full expression@Eq. ~15!# for the
magnetic fields, taking thea-axis penetration depth equal t
0.17 mm.15 An evaluation of Eq.~15! gives thez component
of the field at a given heightz0 above the sample surface
This field is then numerically integrated over the shape of
pickup loop to obtain the total theoretical fluxFs(x,y,z)
through the pickup loop as a function of the pickup lo
position and thec-axis penetration depthlc . In this case the
pickup loop used was a square 8.2mm on a side, with a
1 mm linewidth, and a superconducting shield 5mm wide
which extends to the top corner of the pickup loop, as in
cated by the inset of Fig. 4. For our modeling we add to
flux through the pickup loop one third of the flux intercep
ing an area 5mm by 5 mm on a side, starting at the uppe
corner of the pickup loop, to account for flux focusing effec
from the superconducting shield. The solid lines in Fig. 5
best fits of the cross sectionFs(x50,y,z5z0) to the experi-
mental data, using the interlayer penetrationlc , the height
of the pickup loopz0 , and an offset flux, representing

FIG. 4. Grey-scale images of five interlayer vortices in the hig
Tc cuprate superconductor Tl-2201. The scaling correspond
0.11f0(I),0.16f0(II),0.13f0(III),0.22f0(IV), and 0.19f0(V)
full-scale variation from black to white in the integrated flu
through the pickup loop.
ty
e
e
be

-
g
l
e
e

lar
.
y
c-
r-
4.
i-

e

i-
e

e

small uncertainty of the background signal, as free para
eters. The best fit values for each vortex are displayed in
figure, with uncertainties assigned using a doubling of thex2

value as a criterion. Reasonable agreement is obtained
tween experimental and theoretical cross sections. The a
age value forlc , using a weighting inversely proportional t
the square of the uncertainties, islc518.363 mm.

For comparison, a similar analysis of the same vortic
neglecting the effect of vortex spreading resulted in
weighted average best-fit value oflc51962 mm. This
comparison is surprising at first, since the theoretical FWH
at the surface is reduced by 30% when the vortex sprea
is neglected. However, the uncertain value of the heigh
the pickup loop compensates for the assumption of ne
gible vortex spreading below the surface. When the spre
ing below the surface is neglected, the fitting routine co
pensates by picking a higher value ofz0 , thereby moving the
spreading to the vacuum rather than the superconductor

In conclusion, we have presented a solution to Londo
equation for the case of an interlayer vortex approachin
superconducting surface normal to the surface and parall
the planes. This model is appropriate for experiments wh
magnetically image interlayer vortices. Good agreement w
available experiments is obtained with this model, allowi
the quantitative determination of the interlayer penetrat
depths from these measurements.

We would like to thank D. G. Hinks, T. W. Li, and Ming
Xu for supplying the Tl-2201 crystals used for the SQU
images shown in this paper. We would also like to thank
B. Ketchen for the design, and M. Bhushan for the fabric
tion, of the SQUID’s used here.
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FIG. 5. Cross sections along the plane directions through
images of Fig. 4. Each successive curve is offset by 0.1 unit
clarity. The dots are the data; the lines are fits to the present m
as described in the text.
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